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Newton’s Laws 

1. Law (law of inertia): 

§  A resting body is just a special case of this law. 

2. Law (law of action): 

§  In other words: force and acceleration are proportional to each other; 
(the proportionality factor happens to be m). In aprticular, both force 
and acceleration have the same direction. 

 A body, which no forces act upon, continues to move with  
 constant velocity. 

If a force F acts on a body with mass m , then the body  
accelerates, and its acceleration is given by 
                                            F = m . a 
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3. Law (law of reaction): 

 

 

 

§  In school, you learn: "action= reaction" 

4. Law (law of superposition): 

If a force F, that acts on a body, is extended to another body, 
Then the opposite force –F acts on that other body. 

If a number offorces F1, …, Fn act on a point or body, then they  
can be accumulated by vector addition yielding one resulting  
force: 
                                        F = F1 + … + Fn .  
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Historical Digression 

§  Newton published these laws in his 
original book  

 Principia Mathematica  
(1687): 

§  Lex I. Corpus omne perseverare in statu 
suo quiescendi vel movendi uniformiter 
in directum, nisi quatenus illud a 
viribus impressis cogitur statum suum 
mutare. 

§  Lex II. Mutationem motus 
proportionalem esse vi motrici 
impressae, et fieri secundum lineam 
rectam qua vis illa imprimitur. 
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§  Definition: 
A mass-spring system is a system consisting of: 
1.  A set of point masses  mi  with positions  xi  and velocities   vi , i = 1…N ; 

2.  A set of springs                                     , where  sij  connects                   
masses i und j, with rest length l0 , spring constant ks (= stiffness)  and the 
damping coeffizient  kd  

§  Advantages: 
§  Very easy to program 

§  Ideally suited to study different kinds of solving methods 

§  Ubiquitous in games (cloths, capes, sometimes also for deformable objects) 

§  Disadvantages: 
§  Some parameters (in particular the spring constants) are not obvious, i.e., 

difficult to derive 

§  No built-in volumetric effects (e.g., preservation of volume) 
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A Single Spring (Plus Damper) 

§  Given: masses  mi  and mj  with positions  xi  , xj 

§  Let 

§  The force between particles i and j : 
1.  Force extended by spring (Hooke's law): 

 
 

acts on mass  mi  in direction of mj 

2.  Force extended by damper : 

3.  Sum of forces : 

4.  Force on mj : 

j i 
rij 

-fij 

l0 

fij 

ks 

kd 

mi mj 

ri j =
xj � xi

⇥xj � xi⇥

f i j
s = ksri j(⇥xj � xi⇥ � l0)

f i j
d = kd((vj � vi)·ri j)ri j
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§  Notice: from (4) follows that the momentum is conserved 

§  I.e., the kinetic energy is conserved 

§ Momentum = velocity × mass =  v . m  

§  Note on terminology:  

§  German "Kraftstoß" = English "Impulse" = force × time 

§  German "Impuls"     = English "momentum" = force × mass       

§  Alternative Federkraft: 

§  A spring-damper element in reality: 

 

f

i j
s = ksri j

kxj � xik � l0
l0
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Simulation of a Single Spring 

§  From Newton’s law, we have: 

§  Convert differential equation (DE) of order 2 into DE of order 1: 

§  Initial values (boundary values): 

§  "Simulation" = "Integration of DE's over time" 

§  By Taylor expansion we get: 

§  Analogeously: 

à This integration scheme is called explicit Euler integration 

x(t + �t) = x(t) + �t ẋ(t) + O
�
�t2

⇥

v̇(t) = 1
m f(t)

ẋ(t) = v(t)

ẍ = 1
m f

v(t0) = v0 , x(t0) = x0
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The Algorithm 

forall particles i : 
 initialize xi, vi, mi 

 
loop forever: 
 forall particles i : 

 
 
  
 forall particles i : 

 

 

 
 render system every n-th time 

f g  = gravitational force 

f coll = penalty force exerted by collision (e.g., with obstacles) 

fi � fg + fcoll
i +

�

j , (i ,j)�S

f(xi , vi , xj , vj)

vi += �t · fi
mi

xi += �t ·vi
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§  Advantages:  

§  Can be implemented very easily 

§  Fast execution per time step 

§  Disadvantages:  

§  Stable only for very small time steps 

-  Typically Δt ≈ 10-4 … 10-3 sec! 

§ With large time steps, additional energy is generated "out of thin air", 
until the system explodes J 

§  Example: overshooting when simulating a single spring 

§  Errors accumulate quickly 
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Example for the Instability of Euler Integration 

§  Consider the diferential equation 

§  The exact solution: 

§  Euler integration does this: 

§  Case                  : 

 
 
⇒  xt oscillates about 0,  but approaches 0 (hopefully) 

§  Case                :   ⇒  xt → ∞ ! 

ẋ(t) = �kx(t)

x(t) = x0 e�kt

x t+1 = x t + �t(�kx t)

�t > 1
k

x t+1 = x t (1� k�t)⇤ ⇥� ⌅
<0

�t > 2
k
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§  Visualization: 

§  Terminology: if k is large → the DE is called "stiff " 

§  The stiffer the DE, the smaller Δt  has to be 

time 

po
si

tio
n 

ẋ(t) = �x(t)
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Visualization of Error Accumulation 

§  Consider this DE: 

§  Exact solution: 

§  The solution by Euler integration 
moves in spirals outward, no 
matter how small Δt! 

§  Conclusion: Euler integration 
accumulates errors, no matter 
how small Δt! 

x(t) =

�
r cos(t + �)
r sin(t + �)

⇥

ẋ(t) =

✓
–x2

x1

◆
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Visualization of Differential Equations 

§  The general form of a DE: 

§  Visualization of f as a vector field: 

§  Notice: this vector field can vary over time! 

§  Solution of a boundary value problem = path through this field 

ẋ(t) = f( x(t), t )
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§  Runge-Kutta of order 2: 

§  Idea: approximate  f( x(t), t )  by a quadratic function that is defined at 
positions  x(t), x( t+ ½Δt ) and  v(t) 

§  The integrator (w/o proof): 

§  Runge-Kutta of order 4: 

§  The standard integrator among the explicit integration schemata 

§  Needs 4 function evaluations (i.e., force computations) per time step 

§ Order of convergence is:  e(�t) = O
�
�t4

⇥

a1 = v

t
a2 =

1

m
f(xt , vt)

b1 = v

t +
1

2
�ta2 b2 =

1

m
f

�
x

t +
1

2
�ta1, v

t +
1

2
�ta2

�

x

t+1 = x

t + �tb1 v

t+1 = v

t + �tb2
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§  Runge-Kutta of order 2: 

§  Runge-Kutta of order 4: 

Euler 
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Verlet Integration 

§  A general, alternative method to increase the order of 
convergence: utilizes values from history 

§  Verlet:  utilize  x(  t  -  Δt  )  

§  Derivation: 

§  Develop the taylor series in both time directions: 

 

x(t + �t) = x(t) + �t ẋ(t) +
1

2
�t2ẍ(t) +

1

6
�t3...x (t) + O

�
�t4

⇥

x(t ��t) = x(t)��t ẋ(t) +
1

2
�t2ẍ(t)� 1

6
�t3...x (t) + O

�
�t4

⇥
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§  Add both: 

 

  

 

§  Initialization: 

§  Remark: the velocity does not occur any more!  
(at least, not explicitely) 

 

x(�t) = x(0) + �tv(0) +
1

2
�t2

� 1

m
f(x(0), v(0))

⇥
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Constraints 

§  Big advantage of Verlet over Euler & Runge-Kutta: 
it is very easy to handle constraints 

§  Definition: constraint = some condition on the position of one or 
more mass points 

§  Examples: 

1.  A point must not penetrate an obstacle 

2.  The distance between two points must be constant, 
or distance must be  ≤ some specific distance 
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§  Examples: 

§  Consider the constraint: 

1.  Perform one Verlet integration step →  

2.  Enforce the constraint:  

x1 x2 l0 

d d 

⇥x1 � x2⇥
!
= l0

x

t+1
1 = x̃

t+1
1 +

1

2
r12 ·

�
||x̃t+1

2 � x̃

t+1
1 ||� l0

�

x

t+1
2 = x̃

t+1
2 � 1

2
r12 ·

�
||x̃t+1

2 � x̃

t+1
1 ||� l0

�

| {z }
d

~ ~ 
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§  Problem: if several constraints are to constrain the same mass 
point, we need to employ constraint algorithms 
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Implicit Integration 

§  All integration schemes are only conditionally stable 

§  I.e.: they are only stable for a specific range for Δt 

§  This range depends on the stiffness of the springs 

§  Goal: unconditionally stability 

§  One option:  implicit Euler integration 

§  Now we've got a system of non-linear, algebraic equations, with 
xt+1  and  vt+1  as unknowns on both sides →  implicit integration  

xt+1
i = xt

i + �tvt
i xt+1

i = xt
i + �tvt+1

i

explicit implicit 

v

t+1
i = v

t
i + �t

1

mi
f(xt+1)v

t+1
i = v

t
i + �t

1

mi
f(xt)
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Solution Method  

§  Write the whole spring-mass system with vectors: 

x =

0

BBB@

x1

x2
...
xn

1

CCCA
=

0

BBBBBBBBB@

x11

x12

x13
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f

i
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0

@
f
i1(x)
f
i2(x)
f
i3(x)

1

A M3n x 3n

=

0

BBBBBBBBBBBBB@

m1

m1

m1

m2

m2
. . .

m
n

m
n

m
n

1

CCCCCCCCCCCCCA



G. Zachmann 25 Mass-Spring-Systems Virtual Reality & Simulation 18 December 2013 WS 

§  Write all the implicit equations as one big system of equations : 

§  Plug (2) into (1) : 

§  Expand f as Taylor series: 

Mvt+1 = Mvt + �tf(xt+1) (1)

xt+1 = xt + �t vt+1 (2)

Mvt+1 = Mvt + �t f( xt + �tvt+1 ) (3) 

(4) 
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§  Plug (4) into (3): 

§  K  is the Jacobi-Matrix, i.e., the derivative of f (wrt. x): 

§  K is called the tangent stiffness matrix 

-  (The normal stiffness matrix is evaluated at the equilibrium of the system: 
here the matrix is evaluated at an arbitrary "position" of the system in phase 
space, hence the name "tangent …") 
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§  Reorder terms : 

§  Now, this has the form: 

 

§  Solve this system of linear equations with any of the iterative 
solvers 

§  Don't use a non-iterative solver, because 

§  A changes with every frame (simulation step) 

§ We can "warm start" the iterative solver with the solution as of last frame 
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Computation of the Stiffness Matrix 

§  First, understand the anatomy of matrix K : 

§  A spring ( i , j )  adds the following four 3x3 block matrices to K : 

 

 

 

 

 

§ Matrix Kij  arises from the derivation of  fi = (fi1, fi2, fi3)   
wrt. xj = (xj1, xj2, xj3): 

 

 

 
§  In the following, consider only  fs  (spring force) 

3i 

3j 

3i 3j 

i j 

Ki j =

�

⇧⇤

�
�xj1

fi1
�

�xj2
fi1

�
�xj3

fi1
...

...
�

�xj1
fi3 · · · �

�xj3
fi3

⇥

⌃⌅
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§  First of all, compute  Kii: 

Ki i =
�

�xi
fi(xi , xj)

= ks
�

�xi

�
(xj � xi)� l0

xj � xi

⇥xj � xi⇥

⇥

= ks

⇧

⌥�I � l0
�I ·⇥xj � xi⇥ � (xj � xi)·2 (xj�xi )�

⇥xj�xi⇥

⇥xj � xi⇥2

⌃

�

= ks

⇤
�I + l0

1

⇥xj � xi⇥
I +

2l0
⇥xj � xi⇥3

(xj � xi)(xj � xi)
T

⌅

—
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§  Reminder: 

§    

§    
�

�x
�x� =

�

�x

�⇤
x2
1 + x2

2 + x2
3

⇥
= 2

xT

�x�
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§  From some symmetries, we can analogously derive: 

§    

§    

§    

Ki j =
�

�xj
fi(xi , xj) = �Ki i

Kj j =
�

�xj
fj(xi , xj) =

�

�xj
(�fi(xi , xj)) = Ki i
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Overall Solution Algorithm 

§  Initialize K = 0 

§  For each spring  ( i , j)   compute  Kii, Kij, Kji, Kjj  and accumulate it 
to K at the right places 

§  Compute 

§  Solve the linear equation system                     → 

§  Compute xt+1 = xt + �t vt+1

Avt+1 = b
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Advantages and Disadvantages 

§  Explicit integration: 
+ Very easy to implement 
- Small step sizes needed 
- Stiff springs don't work very well 
- Forces are propagated only by one spring per time step 

§  Implicit Integration: 
+ Unconditionally stable 
+ Stiff springs work better 
+ Globale solver → forces are being propagated throughut the 
   whole pring-mass system with one time step 

   - Large stime steps are needed, because one step is much more   
      expensive (if real-time is needed) 

   - The integration scheme introduces damping by itself (might be 
      unwanted) 



G. Zachmann 34 Mass-Spring-Systems Virtual Reality & Simulation 18 December 2013 WS 

§  Visualization of: 

§  Informal Descripiton: 

§  Explicit jumps forward blindly, based on current information 

§  Implicit jumps backward and tries to find a future position such that the 
backwards jump arrives exactly at the current point (in phase space) 

time 

po
si

tio
n 

ẋ(t) = �x(t)
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Demo 

http://www.dhteumeuleu.com/dhtml/v-grid.html  
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Mesh Creation for Volumetric Objects 

§  How to create a mass-spring system for a volumetric model? 

§  Direct conversion of 3D (surface) geometry into spring-mass 

system does not yield good results: 

§  Geometry has too high a complexity 

§  Degenerate polygons 

§  Better (and still simple) idea: 

§  Create a tetrahedron mesh out of the geometry (somehow) 

§  Each vertex (node) of the tetrahedron mesh becomes a mass point, 

each edge a spring 

§  Distribute the masses of the tetraeder (= density × volume) equally 

among the mass point 
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§  Generation of the tetrahedron mesh (simple method): 
§  Distribute a number of points uniformly (perhaps randomly) in the 

interior of the geometry (so called "Steiner points") 

§  Dito for a sheet/band above the surface 

§  Connect the points by Delaunay triangulation (see my "Geometric 
Data Structures for CG" course) 

§  Anchor the surface meshes within the tetraeder mesh: 

§  Represent each vertex of the surface mesh by the barycentric 
combination of its surrounding tetrahedron vertices 
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§  In addition (optionally):  

§  Anchor the outer mass points (of 
the tetrahedron mesh) at 
(imaginary) walls 

§  Introduce diagonal 
"struts" (Streben) 
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Collision Detection 

§  Put all tetrahedra in a 3D grid (use a hash table!) 

§  In case of a collision in the hash table: 

§  Compute exact intersection between the 2 involved tetrahedra 
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Collision Response 

§  Task: objects P and Q (= tetrahedral meshes) collide —  
what is the penalty force? 

§  Naïve approach: 

§  For each mass point of P that 
has penetrated, compute its 
closest distance from the surface 
of Q → force (amount + direction) 

§   Problem:  

§  Implausible forces  

§  "Tunneling" (s. a. the chapter on force-feedback) 

•4

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

! rigid and deformable objects

! collisions, self-collisions, n-body environments

! memory efficient, interactive 

Spatial Hashing - Summary

Collision Response

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Introduction

! computation of penalty forces based on the

penetration depth of intersecting vertices

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Challenges

! inconsistent penetration depth information due to

discrete simulation steps and object discretization

! [Heidelberger, Teschner et al. 2003]

inconsistent inconsistent consistentconsistent

Q 

P 
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§  Examples: 

inconsistent consistent 
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Consistente Penalty Forces 

1. Phase: identify all points of P that 

penetrate Q 

2. Phase: determine all edges of P that 

intersect the surface of Q 

§  For each such edge, compute the exact 

intersection point xi 

§  For each intersection point, compute a 

normal ni 

-  E.g., by barycentric interpolation of the vertex 
normals of Q 

•5

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm – Stage 1

! object points are classified as colliding 

or non-colloding points ! spatial hashing

non-colliding point

colliding point

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm – Stage 2

! border points, intersecting edges, and intersection points 

are detected ! extended spatial hashing

intersection edge

border point

intersection point

intersection normal

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm – Stage 3

! penetration depth d(p) of a border point p is 

approximated using the adjacent intersection
points xi and normals ni

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm – Stage 4

! consistent penetration depth information at points pj is

propagated to other colliding points p

P 

Q 
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3. Phase: compute the approximate force for border points 

§  Border point = a point p that penetrates Q and is incident to an 
intersecting edge 

§ Observation: a border point can be incident to several intersecting edges 

§  Set the penetration depth for point p 
to 
 
 

 
where d(p) = approx. penetration depth  

of mass point p,   xi = point of the  
intersection of an edge incident to p with  
surface Q,  ni = normal to surface of Q  
at point xi ,  

and   
 

d(p) =

�k
i=1 �(xi ,p) (xi � p)·ni�k

i=1 �(xi ,p)

�(xi ,p) =
1

⇥xi � p⇥
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§  Direction of the penalty force on border points: 

4. Phase: propagate forces by way of breadth-first traversal through 
the tetrahedron mesh 
 

 
 
where pi = points of P that have been visited already,   p = point 
not yet visited, ri = direction of the estimated penalty force in 
point pi . 

d(p) =

⇤k
i=1 �(pi ,p)

�
(pi � p)·ri + d(pi)

⇥
⇤k

i=1 �(xi ,p)

r(p) =

Pk
i=1 !(xi ,p)niPk
i=1 !(xi ,p)
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Visualization 
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Video 

http://cg.informatik.uni-freiburg.de  


