
Virtual Reality &
Physically-Based Simulation
Mass-Spring-Systems

G. Zachmann
University of Bremen, Germany
cgvr.cs.uni-bremen.de

G. Zachmann 2 Mass-Spring-Systems Virtual Reality & Simulation 18 December 2013 WS

Newton’s Laws

1. Law (law of inertia):

§  A resting body is just a special case of this law.

2. Law (law of action):

§  In other words: force and acceleration are proportional to each other;
(the proportionality factor happens to be m). In aprticular, both force
and acceleration have the same direction.

 A body, which no forces act upon, continues to move with
 constant velocity.

If a force F acts on a body with mass m , then the body
accelerates, and its acceleration is given by
 F = m . a

G. Zachmann 3 Mass-Spring-Systems Virtual Reality & Simulation 18 December 2013 WS

3. Law (law of reaction):

§  In school, you learn: "action= reaction"

4. Law (law of superposition):

If a force F, that acts on a body, is extended to another body,
Then the opposite force –F acts on that other body.

If a number offorces F1, …, Fn act on a point or body, then they
can be accumulated by vector addition yielding one resulting
force:
 F = F1 + … + Fn .

G. Zachmann 4 Mass-Spring-Systems Virtual Reality & Simulation 18 December 2013 WS

Historical Digression

§  Newton published these laws in his
original book

 Principia Mathematica
(1687):

§  Lex I. Corpus omne perseverare in statu
suo quiescendi vel movendi uniformiter
in directum, nisi quatenus illud a
viribus impressis cogitur statum suum
mutare.

§  Lex II. Mutationem motus
proportionalem esse vi motrici
impressae, et fieri secundum lineam
rectam qua vis illa imprimitur.

G. Zachmann 5 Mass-Spring-Systems Virtual Reality & Simulation 18 December 2013 WS

§  Definition:
A mass-spring system is a system consisting of:
1.  A set of point masses mi with positions xi and velocities vi , i = 1…N ;

2.  A set of springs , where sij connects
masses i und j, with rest length l0 , spring constant ks (= stiffness) and the
damping coeffizient kd

§  Advantages:
§  Very easy to program

§  Ideally suited to study different kinds of solving methods

§  Ubiquitous in games (cloths, capes, sometimes also for deformable objects)

§  Disadvantages:
§  Some parameters (in particular the spring constants) are not obvious, i.e.,

difficult to derive

§  No built-in volumetric effects (e.g., preservation of volume)

G. Zachmann 6 Mass-Spring-Systems Virtual Reality & Simulation 18 December 2013 WS

A Single Spring (Plus Damper)

§  Given: masses mi and mj with positions xi , xj

§  Let

§  The force between particles i and j :
1.  Force extended by spring (Hooke's law):

acts on mass mi in direction of mj

2.  Force extended by damper :

3.  Sum of forces :

4.  Force on mj :

j i
rij

-fij

l0

fij

ks

kd

mi mj

ri j =
xj � xi

⇥xj � xi⇥

f i j
s = ksri j(⇥xj � xi⇥ � l0)

f i j
d = kd((vj � vi)·ri j)ri j

G. Zachmann 7 Mass-Spring-Systems Virtual Reality & Simulation 18 December 2013 WS

§  Notice: from (4) follows that the momentum is conserved

§  I.e., the kinetic energy is conserved

§ Momentum = velocity × mass = v . m

§  Note on terminology:

§  German "Kraftstoß" = English "Impulse" = force × time

§  German "Impuls" = English "momentum" = force × mass

§  Alternative Federkraft:

§  A spring-damper element in reality:

f

i j
s = ksri j

kxj � xik � l0
l0

G. Zachmann 8 Mass-Spring-Systems Virtual Reality & Simulation 18 December 2013 WS

Simulation of a Single Spring

§  From Newton’s law, we have:

§  Convert differential equation (DE) of order 2 into DE of order 1:

§  Initial values (boundary values):

§  "Simulation" = "Integration of DE's over time"

§  By Taylor expansion we get:

§  Analogeously:

à This integration scheme is called explicit Euler integration

x(t + �t) = x(t) + �t ẋ(t) + O
�
�t2

⇥

v̇(t) = 1
m f(t)

ẋ(t) = v(t)

ẍ = 1
m f

v(t0) = v0 , x(t0) = x0

G. Zachmann 9 Mass-Spring-Systems Virtual Reality & Simulation 18 December 2013 WS

The Algorithm

forall particles i :
 initialize xi, vi, mi

loop forever:
 forall particles i :

 forall particles i :

 render system every n-th time

f g = gravitational force

f coll = penalty force exerted by collision (e.g., with obstacles)

fi � fg + fcoll
i +

�

j , (i ,j)�S

f(xi , vi , xj , vj)

vi += �t · fi
mi

xi += �t ·vi

G. Zachmann 10 Mass-Spring-Systems Virtual Reality & Simulation 18 December 2013 WS

§  Advantages:

§  Can be implemented very easily

§  Fast execution per time step

§  Disadvantages:

§  Stable only for very small time steps

-  Typically Δt ≈ 10-4 … 10-3 sec!

§ With large time steps, additional energy is generated "out of thin air",
until the system explodes J

§  Example: overshooting when simulating a single spring

§  Errors accumulate quickly

G. Zachmann 11 Mass-Spring-Systems Virtual Reality & Simulation 18 December 2013 WS

Example for the Instability of Euler Integration

§  Consider the diferential equation

§  The exact solution:

§  Euler integration does this:

§  Case :

⇒ xt oscillates about 0, but approaches 0 (hopefully)

§  Case : ⇒ xt → ∞ !

ẋ(t) = �kx(t)

x(t) = x0 e�kt

x t+1 = x t + �t(�kx t)

�t > 1
k

x t+1 = x t (1� k�t)⇤ ⇥� ⌅
<0

�t > 2
k

G. Zachmann 12 Mass-Spring-Systems Virtual Reality & Simulation 18 December 2013 WS

§  Visualization:

§  Terminology: if k is large → the DE is called "stiff "

§  The stiffer the DE, the smaller Δt has to be

time

po
si

tio
n

ẋ(t) = �x(t)

G. Zachmann 13 Mass-Spring-Systems Virtual Reality & Simulation 18 December 2013 WS

Visualization of Error Accumulation

§  Consider this DE:

§  Exact solution:

§  The solution by Euler integration
moves in spirals outward, no
matter how small Δt!

§  Conclusion: Euler integration
accumulates errors, no matter
how small Δt!

x(t) =

�
r cos(t + �)
r sin(t + �)

⇥

ẋ(t) =

✓
–x2

x1

◆

G. Zachmann 15 Mass-Spring-Systems Virtual Reality & Simulation 18 December 2013 WS

Visualization of Differential Equations

§  The general form of a DE:

§  Visualization of f as a vector field:

§  Notice: this vector field can vary over time!

§  Solution of a boundary value problem = path through this field

ẋ(t) = f(x(t), t)

G. Zachmann 16 Mass-Spring-Systems Virtual Reality & Simulation 18 December 2013 WS

§  Runge-Kutta of order 2:

§  Idea: approximate f(x(t), t) by a quadratic function that is defined at
positions x(t), x(t+ ½Δt) and v(t)

§  The integrator (w/o proof):

§  Runge-Kutta of order 4:

§  The standard integrator among the explicit integration schemata

§  Needs 4 function evaluations (i.e., force computations) per time step

§ Order of convergence is: e(�t) = O
�
�t4

⇥

a1 = v

t
a2 =

1

m
f(xt , vt)

b1 = v

t +
1

2
�ta2 b2 =

1

m
f

�
x

t +
1

2
�ta1, v

t +
1

2
�ta2

�

x

t+1 = x

t + �tb1 v

t+1 = v

t + �tb2

G. Zachmann 17 Mass-Spring-Systems Virtual Reality & Simulation 18 December 2013 WS

§  Runge-Kutta of order 2:

§  Runge-Kutta of order 4:

Euler

G. Zachmann 18 Mass-Spring-Systems Virtual Reality & Simulation 18 December 2013 WS

Verlet Integration

§  A general, alternative method to increase the order of
convergence: utilizes values from history

§  Verlet: utilize x(t - Δt)

§  Derivation:

§  Develop the taylor series in both time directions:

x(t + �t) = x(t) + �t ẋ(t) +
1

2
�t2ẍ(t) +

1

6
�t3...x (t) + O

�
�t4

⇥

x(t ��t) = x(t)��t ẋ(t) +
1

2
�t2ẍ(t)� 1

6
�t3...x (t) + O

�
�t4

⇥

G. Zachmann 19 Mass-Spring-Systems Virtual Reality & Simulation 18 December 2013 WS

§  Add both:

§  Initialization:

§  Remark: the velocity does not occur any more!
(at least, not explicitely)

x(�t) = x(0) + �tv(0) +
1

2
�t2

� 1

m
f(x(0), v(0))

⇥

G. Zachmann 20 Mass-Spring-Systems Virtual Reality & Simulation 18 December 2013 WS

Constraints

§  Big advantage of Verlet over Euler & Runge-Kutta:
it is very easy to handle constraints

§  Definition: constraint = some condition on the position of one or
more mass points

§  Examples:

1.  A point must not penetrate an obstacle

2.  The distance between two points must be constant,
or distance must be ≤ some specific distance

G. Zachmann 21 Mass-Spring-Systems Virtual Reality & Simulation 18 December 2013 WS

§  Examples:

§  Consider the constraint:

1.  Perform one Verlet integration step →

2.  Enforce the constraint:

x1 x2 l0

d d

⇥x1 � x2⇥
!
= l0

x

t+1
1 = x̃

t+1
1 +

1

2
r12 ·

�
||x̃t+1

2 � x̃

t+1
1 ||� l0

�

x

t+1
2 = x̃

t+1
2 � 1

2
r12 ·

�
||x̃t+1

2 � x̃

t+1
1 ||� l0

�

| {z }
d

~ ~

G. Zachmann 22 Mass-Spring-Systems Virtual Reality & Simulation 18 December 2013 WS

§  Problem: if several constraints are to constrain the same mass
point, we need to employ constraint algorithms

G. Zachmann 23 Mass-Spring-Systems Virtual Reality & Simulation 18 December 2013 WS

Implicit Integration

§  All integration schemes are only conditionally stable

§  I.e.: they are only stable for a specific range for Δt

§  This range depends on the stiffness of the springs

§  Goal: unconditionally stability

§  One option: implicit Euler integration

§  Now we've got a system of non-linear, algebraic equations, with
xt+1 and vt+1 as unknowns on both sides → implicit integration

xt+1
i = xt

i + �tvt
i xt+1

i = xt
i + �tvt+1

i

explicit implicit

v

t+1
i = v

t
i + �t

1

mi
f(xt+1)v

t+1
i = v

t
i + �t

1

mi
f(xt)

G. Zachmann 24 Mass-Spring-Systems Virtual Reality & Simulation 18 December 2013 WS

Solution Method

§  Write the whole spring-mass system with vectors:

x =

0

BBB@

x1

x2
...
xn

1

CCCA
=

0

BBBBBBBBB@

x11

x12

x13

x21

x22
...

xn3

1

CCCCCCCCCA

v =

0

BBB@

v1

v2
...
vn

1

CCCA
=

0

BBBBBBBBB@

v11

v12

v13

v21

v22
...

vn3

1

CCCCCCCCCA

f(x) =

0

B@
f1(x)

...
fn(x)

1

CA

f

i

=

0

@
f
i1(x)
f
i2(x)
f
i3(x)

1

A M3n x 3n

=

0

BBBBBBBBBBBBB@

m1

m1

m1

m2

m2
. . .

m
n

m
n

m
n

1

CCCCCCCCCCCCCA

G. Zachmann 25 Mass-Spring-Systems Virtual Reality & Simulation 18 December 2013 WS

§  Write all the implicit equations as one big system of equations :

§  Plug (2) into (1) :

§  Expand f as Taylor series:

Mvt+1 = Mvt + �tf(xt+1) (1)

xt+1 = xt + �t vt+1 (2)

Mvt+1 = Mvt + �t f(xt + �tvt+1) (3)

(4)

G. Zachmann 26 Mass-Spring-Systems Virtual Reality & Simulation 18 December 2013 WS

§  Plug (4) into (3):

§  K is the Jacobi-Matrix, i.e., the derivative of f (wrt. x):

§  K is called the tangent stiffness matrix

-  (The normal stiffness matrix is evaluated at the equilibrium of the system:
here the matrix is evaluated at an arbitrary "position" of the system in phase
space, hence the name "tangent …")

G. Zachmann 27 Mass-Spring-Systems Virtual Reality & Simulation 18 December 2013 WS

§  Reorder terms :

§  Now, this has the form:

§  Solve this system of linear equations with any of the iterative
solvers

§  Don't use a non-iterative solver, because

§  A changes with every frame (simulation step)

§ We can "warm start" the iterative solver with the solution as of last frame

G. Zachmann 28 Mass-Spring-Systems Virtual Reality & Simulation 18 December 2013 WS

Computation of the Stiffness Matrix

§  First, understand the anatomy of matrix K :

§  A spring (i , j) adds the following four 3x3 block matrices to K :

§ Matrix Kij arises from the derivation of fi = (fi1, fi2, fi3)
wrt. xj = (xj1, xj2, xj3):

§  In the following, consider only fs (spring force)

3i

3j

3i 3j

i j

Ki j =

�

⇧⇤

�
�xj1

fi1
�

�xj2
fi1

�
�xj3

fi1
...

...
�

�xj1
fi3 · · · �

�xj3
fi3

⇥

⌃⌅

G. Zachmann 29 Mass-Spring-Systems Virtual Reality & Simulation 18 December 2013 WS

§  First of all, compute Kii:

Ki i =
�

�xi
fi(xi , xj)

= ks
�

�xi

�
(xj � xi)� l0

xj � xi

⇥xj � xi⇥

⇥

= ks

⇧

⌥�I � l0
�I ·⇥xj � xi⇥ � (xj � xi)·2 (xj�xi)�

⇥xj�xi⇥

⇥xj � xi⇥2

⌃

�

= ks

⇤
�I + l0

1

⇥xj � xi⇥
I +

2l0
⇥xj � xi⇥3

(xj � xi)(xj � xi)
T

⌅

—

G. Zachmann 30 Mass-Spring-Systems Virtual Reality & Simulation 18 December 2013 WS

§  Reminder:

§ 

§ 
�

�x
�x� =

�

�x

�⇤
x2
1 + x2

2 + x2
3

⇥
= 2

xT

�x�

G. Zachmann 31 Mass-Spring-Systems Virtual Reality & Simulation 18 December 2013 WS

§  From some symmetries, we can analogously derive:

§ 

§ 

§ 

Ki j =
�

�xj
fi(xi , xj) = �Ki i

Kj j =
�

�xj
fj(xi , xj) =

�

�xj
(�fi(xi , xj)) = Ki i

G. Zachmann 32 Mass-Spring-Systems Virtual Reality & Simulation 18 December 2013 WS

Overall Solution Algorithm

§  Initialize K = 0

§  For each spring (i , j) compute Kii, Kij, Kji, Kjj and accumulate it
to K at the right places

§  Compute

§  Solve the linear equation system →

§  Compute xt+1 = xt + �t vt+1

Avt+1 = b

G. Zachmann 33 Mass-Spring-Systems Virtual Reality & Simulation 18 December 2013 WS

Advantages and Disadvantages

§  Explicit integration:
+ Very easy to implement
- Small step sizes needed
- Stiff springs don't work very well
- Forces are propagated only by one spring per time step

§  Implicit Integration:
+ Unconditionally stable
+ Stiff springs work better
+ Globale solver → forces are being propagated throughut the
 whole pring-mass system with one time step

 - Large stime steps are needed, because one step is much more
 expensive (if real-time is needed)

 - The integration scheme introduces damping by itself (might be
 unwanted)

G. Zachmann 34 Mass-Spring-Systems Virtual Reality & Simulation 18 December 2013 WS

§  Visualization of:

§  Informal Descripiton:

§  Explicit jumps forward blindly, based on current information

§  Implicit jumps backward and tries to find a future position such that the
backwards jump arrives exactly at the current point (in phase space)

time

po
si

tio
n

ẋ(t) = �x(t)

G. Zachmann 35 Mass-Spring-Systems Virtual Reality & Simulation 18 December 2013 WS

Demo

http://www.dhteumeuleu.com/dhtml/v-grid.html

G. Zachmann 36 Mass-Spring-Systems Virtual Reality & Simulation 18 December 2013 WS

Mesh Creation for Volumetric Objects

§  How to create a mass-spring system for a volumetric model?

§  Direct conversion of 3D (surface) geometry into spring-mass

system does not yield good results:

§  Geometry has too high a complexity

§  Degenerate polygons

§  Better (and still simple) idea:

§  Create a tetrahedron mesh out of the geometry (somehow)

§  Each vertex (node) of the tetrahedron mesh becomes a mass point,

each edge a spring

§  Distribute the masses of the tetraeder (= density × volume) equally

among the mass point

G. Zachmann 37 Mass-Spring-Systems Virtual Reality & Simulation 18 December 2013 WS

§  Generation of the tetrahedron mesh (simple method):
§  Distribute a number of points uniformly (perhaps randomly) in the

interior of the geometry (so called "Steiner points")

§  Dito for a sheet/band above the surface

§  Connect the points by Delaunay triangulation (see my "Geometric
Data Structures for CG" course)

§  Anchor the surface meshes within the tetraeder mesh:

§  Represent each vertex of the surface mesh by the barycentric
combination of its surrounding tetrahedron vertices

G. Zachmann 38 Mass-Spring-Systems Virtual Reality & Simulation 18 December 2013 WS

§  In addition (optionally):

§  Anchor the outer mass points (of
the tetrahedron mesh) at
(imaginary) walls

§  Introduce diagonal
"struts" (Streben)

G. Zachmann 39 Mass-Spring-Systems Virtual Reality & Simulation 18 December 2013 WS

Collision Detection

§  Put all tetrahedra in a 3D grid (use a hash table!)

§  In case of a collision in the hash table:

§  Compute exact intersection between the 2 involved tetrahedra

G. Zachmann 40 Mass-Spring-Systems Virtual Reality & Simulation 18 December 2013 WS

Collision Response

§  Task: objects P and Q (= tetrahedral meshes) collide —
what is the penalty force?

§  Naïve approach:

§  For each mass point of P that
has penetrated, compute its
closest distance from the surface
of Q → force (amount + direction)

§  Problem:

§  Implausible forces

§  "Tunneling" (s. a. the chapter on force-feedback)

•4

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

! rigid and deformable objects

! collisions, self-collisions, n-body environments

! memory efficient, interactive

Spatial Hashing - Summary

Collision Response

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Introduction

! computation of penalty forces based on the

penetration depth of intersecting vertices

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Challenges

! inconsistent penetration depth information due to

discrete simulation steps and object discretization

! [Heidelberger, Teschner et al. 2003]

inconsistent inconsistent consistentconsistent

Q

P

G. Zachmann 41 Mass-Spring-Systems Virtual Reality & Simulation 18 December 2013 WS

§  Examples:

inconsistent consistent

G. Zachmann 42 Mass-Spring-Systems Virtual Reality & Simulation 18 December 2013 WS

Consistente Penalty Forces

1. Phase: identify all points of P that

penetrate Q

2. Phase: determine all edges of P that

intersect the surface of Q

§  For each such edge, compute the exact

intersection point xi

§  For each intersection point, compute a

normal ni

-  E.g., by barycentric interpolation of the vertex
normals of Q

•5

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm – Stage 1

! object points are classified as colliding

or non-colloding points ! spatial hashing

non-colliding point

colliding point

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm – Stage 2

! border points, intersecting edges, and intersection points

are detected ! extended spatial hashing

intersection edge

border point

intersection point

intersection normal

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm – Stage 3

! penetration depth d(p) of a border point p is

approximated using the adjacent intersection
points xi and normals ni

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm – Stage 4

! consistent penetration depth information at points pj is

propagated to other colliding points p

P

Q

•5

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm – Stage 1

! object points are classified as colliding

or non-colloding points ! spatial hashing

non-colliding point

colliding point

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm – Stage 2

! border points, intersecting edges, and intersection points

are detected ! extended spatial hashing

intersection edge

border point

intersection point

intersection normal

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm – Stage 3

! penetration depth d(p) of a border point p is

approximated using the adjacent intersection
points xi and normals ni

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm – Stage 4

! consistent penetration depth information at points pj is

propagated to other colliding points p

G. Zachmann 43 Mass-Spring-Systems Virtual Reality & Simulation 18 December 2013 WS

3. Phase: compute the approximate force for border points

§  Border point = a point p that penetrates Q and is incident to an
intersecting edge

§ Observation: a border point can be incident to several intersecting edges

§  Set the penetration depth for point p
to

where d(p) = approx. penetration depth

of mass point p, xi = point of the
intersection of an edge incident to p with
surface Q, ni = normal to surface of Q
at point xi ,

and

d(p) =

�k
i=1 �(xi ,p) (xi � p)·ni�k

i=1 �(xi ,p)

�(xi ,p) =
1

⇥xi � p⇥

•5

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm – Stage 1

! object points are classified as colliding

or non-colloding points ! spatial hashing

non-colliding point

colliding point

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm – Stage 2

! border points, intersecting edges, and intersection points

are detected ! extended spatial hashing

intersection edge

border point

intersection point

intersection normal

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm – Stage 3

! penetration depth d(p) of a border point p is

approximated using the adjacent intersection
points xi and normals ni

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm – Stage 4

! consistent penetration depth information at points pj is

propagated to other colliding points p

Q

P

G. Zachmann 44 Mass-Spring-Systems Virtual Reality & Simulation 18 December 2013 WS

§  Direction of the penalty force on border points:

4. Phase: propagate forces by way of breadth-first traversal through
the tetrahedron mesh

where pi = points of P that have been visited already, p = point
not yet visited, ri = direction of the estimated penalty force in
point pi .

d(p) =

⇤k
i=1 �(pi ,p)

�
(pi � p)·ri + d(pi)

⇥
⇤k

i=1 �(xi ,p)

r(p) =

Pk
i=1 !(xi ,p)niPk
i=1 !(xi ,p)

G. Zachmann 45 Mass-Spring-Systems Virtual Reality & Simulation 18 December 2013 WS

Visualization

G. Zachmann 46 Mass-Spring-Systems Virtual Reality & Simulation 18 December 2013 WS

Video

http://cg.informatik.uni-freiburg.de

